
nf-core/rnaseq: Output
Introduction
This document describes the output produced by the pipeline. Most of the plots
are taken from the MultiQC report generated from the full-sized test dataset for
the pipeline using a command similar to the one below:

nextflow run nf-core/rnaseq -profile test_full,<docker/singularity/institute>

The directories listed below will be created in the results directory after the
pipeline has finished. All paths are relative to the top-level results directory.

Pipeline overview
The pipeline is built using Nextflow and processes data using the following steps:

Preprocessing
cat - Merge re-sequenced FastQ files
FastQC - Raw read QC
UMI-tools extract - UMI barcode extraction
TrimGalore - Adapter and quality trimming
BBSplit - Removal of genome contaminants
SortMeRNA - Removal of ribosomal RNA

Alignment and quantification
STAR and Salmon - Fast spliced aware genome alignment and
transcriptome quantification
STAR via RSEM - Alignment and quantification of expression levels
HISAT2 - Memory efficient splice aware alignment to a reference

Alignment post-processing
SAMtools - Sort and index alignments
UMI-tools dedup - UMI-based deduplication
picard MarkDuplicates - Duplicate read marking

Other steps
StringTie - Transcript assembly and quantification
BEDTools and bedGraphToBigWig - Create bigWig coverage files

Quality control
RSeQC - Various RNA-seq QC metrics
Qualimap - Various RNA-seq QC metrics
dupRadar - Assessment of technical / biological read duplication
Preseq - Estimation of library complexity
featureCounts - Read counting relative to gene biotype
DESeq2 - PCA plot and sample pairwise distance heatmap and
dendrogram
MultiQC - Present QC for raw reads, alignment, read counting and
sample similiarity

Pseudo-alignment and quantification
Salmon - Wicked fast gene and isoform quantification relative to the
transcriptome

Workflow reporting and genomes
Reference genome files - Saving reference genome indices/files
Pipeline information - Report metrics generated during the workflow
execution

Preprocessing
cat

Output files

If multiple libraries/runs have been provided for the same sample in the input
samplesheet (e.g. to increase sequencing depth) then these will be merged at
the very beginning of the pipeline in order to have consistent sample naming

Table of Contents
Introduction
Pipeline overview
Preprocessing

cat
FastQC
UMI-tools extract
TrimGalore
BBSplit
SortMeRNA

Alignment and quantification
STAR and Salmon
STAR via RSEM
HISAT2

Alignment post-processing
SAMtools
UMI-tools dedup
picard MarkDuplicates

Other steps
StringTie
BEDTools and bedGraphToBigWig

Quality control
RSeQC

Infer experiment
Read distribution
Junction annotation
Inner distance
Junction saturation
Read duplication
BAM stat
TIN

Qualimap
dupRadar
Preseq
featureCounts
DESeq2
MultiQC

Pseudo-alignment and quantification
Salmon

Workflow reporting and genomes
Reference genome files
Pipeline information

https://github.com/nf-core/test-datasets/tree/rnaseq#full-test-dataset-origin
https://www.nextflow.io/

throughout the pipeline. Please refer to the usage documentation to see how to
specify these samples in the input samplesheet.

FastQC

Output files

FastQC gives general quality metrics about your sequenced reads. It provides
information about the quality score distribution across your reads, per base
sequence content (%A/T/G/C), adapter contamination and overrepresented
sequences. For further reading and documentation see the FastQC help pages.

https://nf-co.re/rnaseq/usage#samplesheet-input
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/

UMI-tools extract

Output files

UMI-tools deduplicates reads based on unique molecular identifiers (UMIs) to
address PCR-bias. Firstly, the UMI-tools extract command removes the UMI
barcode information from the read sequence and adds it to the read name.
Secondly, reads are deduplicated based on UMI identifier after mapping as
highlighted in the UMI-tools dedup section.

To facilitate processing of input data which has the UMI barcode already
embedded in the read name from the start, --skip_umi_extract can be
specified in conjunction with --with_umi.

TrimGalore

Output files

Trim Galore! is a wrapper tool around Cutadapt and FastQC to peform quality
and adapter trimming on FastQ files. By default, Trim Galore! will automatically
detect and trim the appropriate adapter sequence.

NB: TrimGalore! will only run using multiple cores if you are able to use more
than > 5 and > 6 CPUs for single- and paired-end data, respectively. The total
cores available to TrimGalore! will also be capped at 4 (7 and 8 CPUs in total
for single- and paired-end data, respectively) because there is no longer a
run-time benefit. See release notes and discussion whilst adding this logic to
the nf-core/atacseq pipeline.

BBSplit

Output files

BBSplit is a tool that bins reads by mapping to multiple references
simultaneously, using BBMap. The reads go to the bin of the reference they map
to best. There are also disambiguation options, such that reads that map to
multiple references can be binned with all of them, none of them, one of them, or
put in a special "ambiguous" file for each of them.

This functionality would be especially useful, for example, if you have mouse
PDX samples that contain a mixture of human and mouse genomic DNA/RNA
and you would like to filter out any mouse derived reads.

The BBSplit index will have to be built at least once with this pipeline by providing
--bbsplit_fasta_list which has to be a file containing 2 columns: short
name and full path to reference genome(s):

mm10,/path/to/mm10.fa
ecoli,/path/to/ecoli.fa
sarscov2,/path/to/sarscov2.fa

https://github.com/CGATOxford/UMI-tools
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://github.com/FelixKrueger/TrimGalore/blob/master/Changelog.md#version-060-release-on-1-mar-2019
https://github.com/nf-core/atacseq/pull/65
http://seqanswers.com/forums/showthread.php?t=41288
https://en.wikipedia.org/wiki/Patient_derived_xenograft
https://nf-co.re/rnaseq/parameters#bbsplit_fasta_list

You can save the index by using the --save_reference parameter and then
provide it via --bbsplit_index for future runs. As described in the Output
files dropdown box above the FastQ files relative to the main reference
genome will always be called *primary*.fastq.gz .

SortMeRNA

Output files

When --remove_ribo_rna is specified, the pipeline uses SortMeRNA for the
removal of ribosomal RNA. By default, rRNA databases defined in the
SortMeRNA GitHub repo are used. You can see an example in the pipeline
Github repository in assets/rrna-default-dbs.txt which is used by default
via the --ribo_database_manifest parameter. Please note that
commercial/non-academic entities require licensing for SILVA for these
default databases.

Alignment and quantification
STAR and Salmon

Output files

STAR is a read aligner designed for splice aware mapping typical of RNA
sequencing data. STAR stands for *S*pliced *T*ranscripts *A*lignment to a
*R*eference, and has been shown to have high accuracy and outperforms other
aligners by more than a factor of 50 in mapping speed, but it is memory intensive.
Using --aligner star_salmon is the default alignment and quantification
option.

Salmon from Ocean Genomics is a tool for wicked-fast transcript quantification
from RNA-seq data. It requires a set of target transcripts (either from a reference
or de-novo assembly) in order to perform quantification. All you need to run
Salmon is a FASTA file containing your reference transcripts and a set of
FASTA/FASTQ/BAM file(s) containing your reads. The transcriptome-level BAM
files generated by STAR are provided to Salmon for downstream quantification.
You can of course also provide FASTQ files directly as input to Salmon in order
to pseudo-align and quantify your data by providing the --pseudo_aligner
salmon parameter. The results generated by the pipeline are exactly the same
whether you provide BAM or FASTQ input so please see the Salmon results
section for more details.

The STAR section of the MultiQC report shows a bar plot with alignment rates:
good samples should have most reads as Uniquely mapped and few Unmapped
reads.

https://nf-co.re/rnaseq/parameters#save_reference
https://nf-co.re/rnaseq/parameters#bbsplit_index
https://github.com/biocore/sortmerna
https://github.com/biocore/sortmerna/tree/master/data/rRNA_databases
https://www.arb-silva.de/silva-license-information
https://github.com/alexdobin/STAR
https://salmon.readthedocs.io/en/latest/salmon.html
https://oceangenomics.com/

STAR via RSEM

Output files

RSEM is a software package for estimating gene and isoform expression levels
from RNA-seq data. It has been widely touted as one of the most accurate
quantification tools for RNA-seq analysis. RSEM wraps other popular tools to
map the reads to the genome (i.e. STAR, Bowtie2, HISAT2; STAR is used in this
pipeline) which are then subsequently filtered relative to a transcriptome before
quantifying at the gene- and isoform-level. Other advantages of using RSEM are
that it performs both the alignment and quantification in a single package and its
ability to effectively use ambiguously-mapping reads.

You can choose to align and quantify your data with RSEM by providing the --
aligner star_rsem parameter.

https://github.com/deweylab/RSEM

HISAT2

Output files

HISAT2 is a fast and sensitive alignment program for mapping next-generation
sequencing reads (both DNA and RNA) to a population of human genomes as
well as to a single reference genome. It introduced a new indexing scheme called
a Hierarchical Graph FM index (HGFM) which when combined with several
alignment strategies, enable rapid and accurate alignment of sequencing reads.
The HISAT2 route through the pipeline is a good option if you have memory
limitations on your compute. However, quantification isn't performed if using --
aligner hisat2 due to the lack of an appropriate option to calculate accurate
expression estimates from HISAT2 derived genomic alignments. However, you
can use this route if you have a preference for the alignment, QC and other types
of downstream analysis compatible with the output of HISAT2.

You can choose to align your data with HISAT2 by providing the --aligner
hisat2 parameter.

Alignment post-processing
The pipeline has been written in a way where all the files generated downstream
of the alignment are placed in the same directory as specified by --aligner e.g.
if --aligner star_salmon is specified then all the downstream results will be
placed in the star_salmon/ directory. This helps with organising the directory
structure and more importantly, allows the end-user to get the results from
multiple aligners by simply re-running the pipeline with a different --aligner
option along the -resume parameter. It also means that results won't be
overwritten when resuming the pipeline and can be used for benchmarking
between alignment algorithms if required.

http://daehwankimlab.github.io/hisat2/

SAMtools

Output files

The original BAM files generated by the selected alignment algorithm are further
processed with SAMtools to sort them by coordinate, for indexing, as well as to
generate read mapping statistics.

UMI-tools dedup

Output files

After extracting the UMI information from the read sequence (see UMI-tools
extract), the second step in the removal of UMI barcodes involves deduplicating
the reads based on both mapping and UMI barcode information using the UMI-
tools dedup command. This will generate a filtered BAM file after the removal of
PCR duplicates.

picard MarkDuplicates

Output files

Unless you are using UMIs it is not possible to establish whether the fragments
you have sequenced from your sample were derived via true biological
duplication (i.e. sequencing independent template fragments) or as a result of
PCR biases introduced during the library preparation. By default, the pipeline
uses picard MarkDuplicates to mark the duplicate reads identified amongst the
alignments to allow you to guage the overall level of duplication in your samples.
However, for RNA-seq data it is not recommended to physically remove duplicate
reads from the alignments (unless you are using UMIs) because you expect a
significant level of true biological duplication that arises from the same fragments

http://samtools.sourceforge.net/
https://emea.illumina.com/science/sequencing-method-explorer/kits-and-arrays/umi.html
https://broadinstitute.github.io/picard/command-line-overview.html#MarkDuplicates

being sequenced from for example highly expressed genes. This step will be
skipped automatically when using the --with_umi option or explicitly via the --
skip_markduplicates parameter.

Other steps
StringTie

Output files

StringTie is a fast and highly efficient assembler of RNA-Seq alignments into
potential transcripts. It uses a novel network flow algorithm as well as an optional
de novo assembly step to assemble and quantitate full-length transcripts
representing multiple splice variants for each gene locus. In order to identify
differentially expressed genes between experiments, StringTie's output can be
processed by specialized software like Ballgown, Cuffdiff or other programs
(DESeq2, edgeR, etc.).

BEDTools and bedGraphToBigWig

Output files

The bigWig format is an indexed binary format useful for displaying dense,
continuous data in Genome Browsers such as the UCSC and IGV. This mitigates
the need to load the much larger BAM files for data visualisation purposes which
will be slower and result in memory issues. The bigWig format is also supported
by various bioinformatics software for downstream processing such as meta-
profile plotting.

Quality control
RSeQC

RSeQC>) is a package of scripts designed to evaluate the quality of RNA-seq
data. This pipeline runs several, but not all RSeQC scripts. You can tweak the
supported scripts you would like to run by adjusting the --rseqc_modules
parameter which by default will run all of the following: bam_stat.py,
inner_distance.py , infer_experiment.py, junction_annotation.py ,
junction_saturation.py ,read_distribution.py and
read_duplication.py.

The majority of RSeQC scripts generate output files which can be plotted and
summarised in the MultiQC report.

Infer experiment

Output files

This script predicts the "strandedness" of the protocol (i.e. unstranded, sense or
antisense) that was used to prepare the sample for sequencing by assessing the

https://ccb.jhu.edu/software/stringtie/
https://github.com/alyssafrazee/ballgown
http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/index.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://genome.ucsc.edu/goldenpath/help/bigWig.html
https://genome.ucsc.edu/cgi-bin/hgTracks
http://software.broadinstitute.org/software/igv/
file:///data/bi/pipelines/nf-core-rnaseq-3.10.1/workflow/docs/(http://rseqc.sourceforge.net/

orientation in which aligned reads overlay gene features in the reference
genome. The strandedness of each sample has to be provided to the pipeline in
the input samplesheet (see usage docs). However, this information is not always
available, especially for public datasets. As a result, additional features have
been incorporated into this pipeline to auto-detect whether you have provided the
correct information in the samplesheet, and if this is not the case then a warning
table will be placed at the top of the MultiQC report highlighting the offending
samples (see image below). If required, this will allow you to correct the input
samplesheet and rerun the pipeline with the accurate strand information. Note, it
is important to get this information right because it can affect the final results.

RSeQC documentation: infer_experiment.py

Read distribution

Output files

This tool calculates how mapped reads are distributed over genomic features. A
good result for a standard RNA-seq experiments is generally to have as many
exonic reads as possible (CDS_Exons). A large amount of intronic reads could be
indicative of DNA contamination in your sample but may be expected for a total
RNA preparation.

RSeQC documentation: read_distribution.py

https://nf-co.re/rnaseq/usage#samplesheet-input
http://rseqc.sourceforge.net/#infer-experiment-py
http://rseqc.sourceforge.net/#read-distribution-py

Junction annotation

Output files

Junction annotation compares detected splice junctions to a reference gene
model. Splicing annotation is performed in two levels: splice event level and
splice junction level.

RSeQC documentation: junction_annotation.py

Inner distance

Output files

The inner distance script tries to calculate the inner distance between two paired-
end reads. It is the distance between the end of read 1 to the start of read 2, and
it is sometimes confused with the insert size (see this blog post for
disambiguation):

This plot will not be generated for single-end data. Very short inner distances are
often seen in old or degraded samples (eg. FFPE) and values can be negative if
the reads overlap consistently.

RSeQC documentation: inner_distance.py

http://rseqc.sourceforge.net/#junction-annotation-py
http://thegenomefactory.blogspot.com.au/2013/08/paired-end-read-confusion-library.html
http://rseqc.sourceforge.net/#inner-distance-py

Junction saturation

Output files

This script shows the number of splice sites detected within the data at various
levels of subsampling. A sample that reaches a plateau before getting to 100%
data indicates that all junctions in the library have been detected, and that further
sequencing will not yield any more observations. A good sample should approach
such a plateau of Known junctions, however, very deep sequencing is typically
required to saturate all Novel Junctions in a sample.

RSeQC documentation: junction_saturation.py

Read duplication

Output files

This plot shows the number of reads (y-axis) with a given number of exact
duplicates (x-axis). Most reads in an RNA-seq library should have a low number
of exact duplicates. Samples which have many reads with many duplicates (a
large area under the curve) may be suffering excessive technical duplication.

RSeQC documentation: read_duplication.py

http://rseqc.sourceforge.net/#junction-saturation-py
http://rseqc.sourceforge.net/#read-duplication-py

BAM stat

Output files

This script gives numerous statistics about the aligned BAM files. A typical output
looks as follows:

#Output (all numbers are read count)
#==
Total records: 41465027
QC failed: 0
Optical/PCR duplicate: 0
Non Primary Hits 8720455
Unmapped reads: 0

mapq < mapq_cut (non-unique): 3127757
mapq >= mapq_cut (unique): 29616815
Read-1: 14841738
Read-2: 14775077
Reads map to '+': 14805391
Reads map to '-': 14811424
Non-splice reads: 25455360
Splice reads: 4161455
Reads mapped in proper pairs: 21856264
Proper-paired reads map to different chrom: 7648

MultiQC plots each of these statistics in a dot plot. Each sample in the project is a
dot - hover to see the sample highlighted across all fields.

RSeQC documentation: bam_stat.py

TIN

Output files

This script is designed to evaluate RNA integrity at the transcript level. TIN
(transcript integrity number) is named in analogous to RIN (RNA integrity
number). RIN (RNA integrity number) is the most widely used metric to evaluate
RNA integrity at sample (or transcriptome) level. It is a very useful preventive
measure to ensure good RNA quality and robust, reproducible RNA sequencing.
This process isn't run by default - please see this issue.

RSeQC documentation: tin.py

Qualimap

Output files

Qualimap is a platform-independent application written in Java and R that

http://rseqc.sourceforge.net/#bam-stat-py
https://github.com/nf-core/rnaseq/issues/769
http://rseqc.sourceforge.net/#tin-py
http://qualimap.bioinfo.cipf.es/

provides both a Graphical User Interface (GUI) and a command-line interface to
facilitate the quality control of alignment sequencing data. Shortly, Qualimap:

Examines sequencing alignment data according to the features of the
mapped reads and their genomic properties.
Provides an overall view of the data that helps to to the detect biases in
the sequencing and/or mapping of the data and eases decision-making for
further analysis.

The Qualimap RNA-seq QC module is used within this pipeline to assess the
overall mapping and coverage relative to gene features.

dupRadar

Output files

dupRadar is a Bioconductor library written in the R programming language. It
generates various QC metrics and plots that relate duplication rate with gene
expression levels in order to identify experiments with high technical duplication.
A good sample with little technical duplication will only show high numbers of
duplicates for highly expressed genes. Samples with technical duplication will
have high duplication for all genes, irrespective of transcription level.

http://qualimap.bioinfo.cipf.es/doc_html/analysis.html#rna-seq-qc
https://www.bioconductor.org/packages/release/bioc/html/dupRadar.html

Credit: dupRadar documentation

Preseq

Output files

The Preseq package is aimed at predicting and estimating the complexity of a
genomic sequencing library, equivalent to predicting and estimating the number
of redundant reads from a given sequencing depth and how many will be
expected from additional sequencing using an initial sequencing experiment. The
estimates can then be used to examine the utility of further sequencing, optimize
the sequencing depth, or to screen multiple libraries to avoid low complexity
samples. A shallow curve indicates that the library has reached complexity
saturation and further sequencing would likely not add further unique reads. The
dashed line shows a perfectly complex library where total reads = unique reads.
Note that these are predictive numbers only, not absolute. The MultiQC plot can
sometimes give extreme sequencing depth on the X axis - click and drag from
the left side of the plot to zoom in on more realistic numbers.

featureCounts

Output files

featureCounts from the Subread package is a quantification tool used to
summarise the mapped read distribution over genomic features such as genes,
exons, promotors, gene bodies, genomic bins and chromosomal locations. We
can also use featureCounts to count overlaps with different classes of genomic

https://www.bioconductor.org/packages/devel/bioc/vignettes/dupRadar/inst/doc/dupRadar.html
http://smithlabresearch.org/software/preseq/
http://bioinf.wehi.edu.au/featureCounts/
http://subread.sourceforge.net/

features. This provides an additional QC to check which features are most
abundant in the sample, and to highlight potential problems such as rRNA
contamination.

DESeq2

Output files

DESeq2 is one of the most commonly used software packages to perform
differential expression analysis for RNA-seq datasets.

This pipeline uses a standardised DESeq2 analysis script to get an idea of
the reproducibility across samples within the experiment. Please note that
this will not suit every experimental design, and if there are other problems
with the experiment then it may not work as well as expected.

The script included in the pipeline uses DESeq2 to normalise read counts across
all of the provided samples in order to create a PCA plot and a clustered heatmap
showing pairwise Euclidean distances between the samples in the experiment.
These help to show the similarity between groups of samples and can reveal
batch effects and other potential issues with the experiment.

By default, the pipeline uses the vst transformation which is more suited to
larger experiments. You can set the parameter --deseq2_vst false if you
wish to use the DESeq2 native rlog option. See DESeq2 docs for a more
detailed explanation.

The PCA plots are generated based alternately on the top five hundred most
variable genes, or all genes. The former is the conventional approach that is
more likely to pick up strong effects (ie the biological signal) and the latter, when
different, is picking up a weaker but consistent effect that is synchronised across
many transcripts. We project both of these onto the first two PCs (shown in the
top row of the figure below), which is the best two dimensional representation of
the variation between samples.

We also explore higher components in terms of experimental factors inferred
from sample names. If your sample naming convention follows a strict policy of
using underscores to delimit values of experimental factors (for example
WT_UNTREATED_REP1) and all names have the same number of underscores (so
excluding WT_TREATED_10ml_REP1 from being compatible with the previous
label), then any of these factors that are informative (ie label some but not all
samples the same) then we individually plot upto the first five PCs, per
experimental level, for each of the experimental factors.

The plot on the left hand side shows the standard PC plot - notice the variable
number of underscores, meaning that the central plot would not be produced:
here we have changed the underscore that is hyphenating the treatment to a '-'
character. This allows the central plot to be generated, and we can see that
replicate (the 2nd part of the sample name) seems to be affecting the 3rd
principal component, but the treatment factor is affecting the more important first

https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#data-transformations-and-visualization

two components. The right-most plot shows all pairwise euclidean distances
between the samples.

MultiQC

Output files

MultiQC is a visualization tool that generates a single HTML report summarising
all samples in your project. Most of the pipeline QC results are visualised in the
report and further statistics are available in the report data directory.

Results generated by MultiQC collate pipeline QC from supported tools i.e.
FastQC, Cutadapt, SortMeRNA, STAR, RSEM, HISAT2, Salmon, SAMtools,
Picard, RSeQC, Qualimap, Preseq and featureCounts. Additionally, various
custom content has been added to the report to assess the output of dupRadar,
DESeq2 and featureCounts biotypes, and to highlight samples failing a mimimum
mapping threshold or those that failed to match the strand-specificity provided in
the input samplesheet. The pipeline has special steps which also allow the
software versions to be reported in the MultiQC output for future traceability. For
more information about how to use MultiQC reports, see http://multiqc.info.

Pseudo-alignment and quantification
Salmon

Output files

As described in the STAR and Salmon section, you can choose to pseudo-align
and quantify your data with Salmon by providing the --pseudo_aligner
salmon parameter. By default, Salmon is run in addition to the standard
alignment workflow defined by --aligner , mainly because it allows you to
obtain QC metrics with respect to the genomic alignments. However, you can
provide the --skip_alignment parameter if you would like to run Salmon in
isolation. If Salmon is run in isolation, the outputs mentioned above will be found
in a folder named salmon. If Salmon is run alongside STAR, the folder will be
named star_salmon.

Transcripts with large inferential uncertainty won't be assigned the exact number
of reads reproducibly, every time Salmon is run. Read more about this on the nf-
core/rnaseq and salmon Github repos.

The tximport package is used in this pipeline to summarise the results generated
by Salmon into matrices for use with downstream differential analysis packages.
We use tximport with different options to summarize count and TPM
quantifications at the gene- and transcript-level. Please see #499 for discussion
and links regarding which counts are suitable for different types of analysis.

According to the txtimport documentation you can do one of the following:

Use bias corrected counts with an offset: import all the salmon files with
tximport and then use DESeq2 with dds <-
DESeqDataSetFromTximport(txi, sampleTable, ~condition) to
correct for changes to the average transcript length across samples.
Use bias corrected counts without an offset: load and use
salmon.merged.gene_counts_length_scaled.tsv or
salmon.merged.gene_counts_scaled.tsv directly as you would with a
regular counts matrix.
Use bias uncorrected counts: load and use the txi$counts matrix (or
salmon.merged.gene_counts.tsv) with DESeq2. This does not correct
for potential differential isoform usage. Alternatively, if you have 3’ tagged
RNA-seq data this is the most suitable method.

NB: The default Salmon parameters and a k-mer size of 31 are used to create
the index. As documented here and discussed here, a k-mer size off 31 works
well with reads that are 75bp or longer.

http://multiqc.info
http://multiqc.info
https://salmon.readthedocs.io/en/latest/salmon.html
https://github.com/nf-core/rnaseq/issues/585
https://github.com/COMBINE-lab/salmon/issues/613
https://bioconductor.org/packages/release/bioc/html/tximport.html
https://github.com/nf-core/rnaseq/issues/499
https://salmon.readthedocs.io/en/latest/salmon.html#preparing-transcriptome-indices-mapping-based-mode
https://github.com/COMBINE-lab/salmon/issues/482#issuecomment-583799668

Workflow reporting and genomes
Reference genome files

Output files

A number of genome-specific files are generated by the pipeline because they
are required for the downstream processing of the results. If the --
save_reference parameter is provided then these will be saved in the genome/
directory. It is recommended to use the --save_reference parameter if you are
using the pipeline to build new indices so that you can save them somewhere
locally. The index building step can be quite a time-consuming process and it
permits their reuse for future runs of the pipeline to save disk space.

Pipeline information

Output files

Nextflow provides excellent functionality for generating various reports relevant to
the running and execution of the pipeline. This will allow you to troubleshoot
errors with the running of the pipeline, and also provide you with other
information such as launch commands, run times and resource usage.

https://www.nextflow.io/docs/latest/tracing.html

	nf-core/rnaseq: Output
	Introduction
	Pipeline overview
	Preprocessing
	cat
	FastQC
	UMI-tools extract
	TrimGalore
	BBSplit
	SortMeRNA

	Alignment and quantification
	STAR and Salmon
	STAR via RSEM
	HISAT2

	Alignment post-processing
	SAMtools
	UMI-tools dedup
	picard MarkDuplicates

	Other steps
	StringTie
	BEDTools and bedGraphToBigWig

	Quality control
	RSeQC
	Infer experiment
	Read distribution
	Junction annotation
	Inner distance
	Junction saturation
	Read duplication
	BAM stat
	TIN

	Qualimap
	dupRadar
	Preseq
	featureCounts
	DESeq2
	MultiQC

	Pseudo-alignment and quantification
	Salmon

	Workflow reporting and genomes
	Reference genome files
	Pipeline information

